The contribution of Kv7 channels to pregnant mouse and human myometrial contractility
نویسندگان
چکیده
Premature birth accounts for approximately 75% of neonatal mortality and morbidity in the developed world. Despite this, methods for identifying and treating women at risk of preterm labour are limited and many women still present in preterm labour requiring tocolytic therapy to suppress uterine contractility. The aim of this study was to assess the utility of Kv7 channel activators as potential uterine smooth muscle (myometrium) relaxants in tissues from pregnant mice and women. Myometrium was obtained from early and late pregnant mice and from lipopolysaccharide (LPS)-injected mice (day 15 of gestation; model of infection in pregnancy). Human myometrium was obtained at the time of Caesarean section from women at term (38-41 weeks). RT-PCR/qRT-PCR detected KCNQ and KCNE expression in mouse and human myometrium. In mice, there was a global suppression of all KCNQ isoforms, except KCNQ3, in early pregnancy (n= 6, P < 0.001 versus late pregnant); expression subsequently increased in late pregnancy (n= 6). KCNE isoforms were also gestationally regulated (P < 0.05). KCNQ and KCNE isoform expression was slightly down-regulated in myometrium from LPS-treated-mice versus controls (P < 0.05, n= 3-4). XE991 (10 μM, Kv7 inhibitor) significantly increased spontaneous myometrial contractions in vitro in both human and mouse myometrial tissues (P < 0.05) and retigabine/flupirtine (20 μM, Kv7 channel activators) caused profound myometrial relaxation (P < 0.05). In summary, Kv7 activators suppressed myometrial contraction and KCNQ gene expression was sustained throughout gestation, particularly at term. Consequently, activation of the encoded channels represents a novel mechanism for treatment of preterm labour.
منابع مشابه
Kv7 and Kv11 channels in myometrial regulation
Ion channels play a key role in defining myometrial contractility. Modulation of ion channel populations is proposed to underpin gestational changes in uterine contractility associated with the transition from uterine quiescence to active labour. Of the myriad ion channels present in the uterus, this article will focus upon potassium channels encoded by the KCNQ genes and ether-à-go-go-related ...
متن کاملP 46: The Role of Kv7-Channels in the Pathophysiology of Multiple Sclerosis
Multiple sclerosis is an autoimmune CNS-disease characterized by inflammatory neurodegenerative events occurring with de- and remyelination. Recent evidence show that demyelinated neurons are less excitable than myelinated ones while at early stages of remyelination these neurons seem to be hyperexcitable. The latter is a transitory condition that, very likely, leads to impaired neuronal networ...
متن کاملMechanism of Relaxation Via TASK-2 Channels in Uterine Circular Muscle of Mouse
Plasma pH can be altered during pregnancy and at labor. Membrane excitability of smooth muscle including uterine muscle is suppressed by the activation of K(+) channels. Because contractility of uterine muscle is regulated by extracellular pH and humoral factors, K(+) conductance could be connected to factors regulating uterine contractility during pregnancy. Here, we showed that TASK-2 inhibit...
متن کاملEffects of the polyphenol resveratrol on contractility of human term pregnant myometrium.
The ideal agent for prevention and treatment of uterine abnormal contractility has not been found. The polyphenol resveratrol possesses a wide spectrum of pharmacologic properties, but its influence on the contractility of human myometrium is not defined. The present study evaluated the effect of resveratrol on the oxytocin-induced contractions of human term pregnant myometrium in vitro and the...
متن کاملA New Slow Releasing, H2S Generating Compound, GYY4137 Relaxes Spontaneous and Oxytocin-Stimulated Contractions of Human and Rat Pregnant Myometrium
Better tocolytics are required to help prevent preterm labour. The gaseotransmitter Hydrogen sulphide (H(2)S) has been shown to reduce myometrial contractility and thus is of potential interest. However previous studies used NaHS, which is toxic and releases H(2)S as a non-physiological bolus and thus alternative H(2)S donors are sought. GYY4137 has been developed to slowly release H(2)S and he...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 15 شماره
صفحات -
تاریخ انتشار 2011